First Order ODE's

1. Seperable Equations

$$
f(y) y^{\prime}=g(x)
$$

Example 1.

$$
y^{\prime}=x^{2}\left(4 y^{2}+1\right) \Longrightarrow \frac{1}{4 y^{2}+1} y^{\prime}=x^{2} \Longrightarrow \frac{1}{2} \tan ^{-1}(2 y)=\frac{x^{3}}{3}+C \Longrightarrow \tan ^{-1}(2 y)=\frac{2 x^{3}}{3}+C \Longrightarrow y=\frac{1}{2} \tan \left(\frac{2 x^{3}}{3}+C\right)
$$

2. Homogenous First Order DEs The method:

$$
y^{\prime}+p(x) y=0 \Longrightarrow \frac{y^{\prime}}{y}=-p(x) \Longrightarrow \int \frac{y^{\prime}}{y}=-\int p(x) \Longrightarrow \ln |y|=-P(x)+\ln |c|
$$

Here $\ln |c|$ is equivalent to c because any number is some number's natural log

$$
\Longrightarrow y=e^{-P(x)} \cdot C
$$

3. Variation Of Parameters OR Integrating Factor

$$
y^{\prime}+p(x) y=f(x)
$$

If you know the solution to the $\mathrm{DE} y^{\prime}+p(x) y=0$ say y_{1} then solution to about DE would be of the form $y=u y_{1}$ for some variable u. As, $y=u y_{1} \Longrightarrow y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}$. Substitute in the original DE and you will get $u^{\prime}=\frac{f(x)}{y_{1}}$. Note: substitute $y_{1}^{\prime}+p(x) y_{1}=0$. comment You don't need to memorize these formulas but I will make use of them to keep the handout brief.

Example 2.

$$
\begin{aligned}
& \therefore \frac{u^{\prime}}{u^{-1}}=\frac{1}{\left(1+x^{2}\right)^{2} y_{1}^{-1-1}} \Longrightarrow u u^{\prime}=\frac{1}{\left(1+x^{2}\right)^{2}} \cdot\left(1+x^{2}\right)^{2} \\
& \Longrightarrow \int u u^{\prime}=\int 1 \Longrightarrow \frac{u^{2}}{2}=x \Longrightarrow u=\sqrt{2 x} \\
& \text { Hence, } y=\frac{\sqrt{2 x}}{1+x^{2}}
\end{aligned}
$$

4. Bernoulli Equations

$$
y^{\prime}+p(x) y=f(x) y^{r}
$$

This can be solved using Variation of Parameters. You should be able to get the relation $\frac{u^{\prime}}{u^{r}}=f(x) y_{1}^{r-1}$

$$
\begin{gathered}
\begin{array}{c}
\left(1+x^{2}\right) y^{\prime}+2 x y=\frac{1}{\left(1+x^{2}\right) y} \Longrightarrow y^{\prime}+\frac{2 x}{\left(1+x^{2}\right)} y=\frac{1}{\left(1+x^{2}\right)^{2} y} \\
\text { Solving the equation } y^{\prime}+\frac{2 x}{\left(1+x^{2}\right)} y=0
\end{array} \\
\Longrightarrow y_{1}=e^{-\int \frac{2 x}{\left(1+x^{2}\right)} d x} \Longrightarrow y_{1}=e^{-\ln \left|1+x^{2}\right|}=\frac{1}{1+x^{2}} \\
\therefore \frac{u^{\prime}}{u^{-1}}=\frac{1}{\left(1+x^{2}\right)^{2} y_{1}^{-1-1}} \Longrightarrow u u^{\prime}=\frac{1}{\left(1+x^{2}\right)^{2}} \cdot\left(1+x^{2}\right)^{2} \\
\Longrightarrow \int u u^{\prime}=\int 1 \Longrightarrow \frac{u^{2}}{2}=x \Longrightarrow u=\sqrt{2 x} \\
\text { Hence, } y=\frac{\sqrt{2 x}}{1+x^{2}}
\end{gathered}
$$

5. Exact Equations If a DE of the form : $M(x, y) d x+N(x, y) d y=0$ has $M_{y}=N_{x}$ where G_{x} represents the partial derivative of a function G with respect x then, the equation is called exact. If this is the form then we can find $F(x, y)$ such that $F_{x}=M(x, y)$ and $F_{y}=N(x, y)$.

Example 3.

$$
\begin{gathered}
\left(3 y \cos (x)+4 x e^{x}+2 x^{2} e^{x}\right) d x+(3 \sin (x)+3) d y=0 \\
M=3 y \cos (x)+4 x e^{x}+2 x^{2} e^{x} \Longrightarrow M_{y}=3 \cos (x) \\
N=3 \sin (x)+3 \Longrightarrow N_{y}=3 \cos (x)
\end{gathered}
$$

Hence the equation is exact. $F_{x}=3 y \cos (x)+4 x e^{x}+2 x^{2} e^{x}$ is difficult to integrate, so choose, $F_{y}=3 \sin (x)+3$ which is easy.

$$
\begin{gathered}
\int F_{y} d y=\int(3 \sin (x)+3) d y \\
F=3 y \sin (x)+3 y+h(x)+C
\end{gathered}
$$

Now need to find $h(x)$.

$$
\begin{gathered}
F_{x}=3 y \cos (x)+h^{\prime}(x)=3 y \cos (x)+4 x e^{x}+2 x^{2} e^{x} \\
h^{\prime}(x)=4 x e^{x}+2 x^{2} e^{x}
\end{gathered}
$$

This is a special integral of the form $\int e^{x}\left(f(x)+f^{\prime}(x)\right)=e^{x} f(x)$

$$
h(x)=2 x^{2} e^{x}
$$

$\therefore F(x, y)=3 y \sin (x)+3 y+2 x^{2} e^{x}+C$ which is the solution to the $D E$.
6. Almost Exact Equations If $M_{y} \neq N_{x}$, there is still hope. We can use integrating factor μ such that, if $q(x)=\frac{M_{y}-N_{x}}{N}$ is independent of y or if $p(y)=\frac{N_{x}-M_{y}}{M}$ is independent of x then $\mu(x)= \pm e^{\int q(x)}$ if the first condition is met or $\mu(y)= \pm e^{\int p(y)}$ if the second condition is met. If both are met $\mu(x, y)=q(x) \cdot p(y)$.

Example 4.

$$
\left(27 x y^{2}+8 y^{3}\right) d x+\left(18 x^{2} y+12 x y^{2}\right) d y=0
$$

The fact that equation is not exact could be easily verified.

$$
M_{y}=54 x y+24 y^{2} \quad \& \quad N_{x}=36 x y+12 y^{2}
$$

situation for $\frac{N_{x}-M_{y}}{M}$ is left as an exercise.

$$
\begin{gathered}
q(x)=\frac{M_{y}-N_{x}}{N} \\
q(x)=\frac{18 x y+12 y^{2}}{18 x^{2} y+12 x y^{2}}=\frac{y(18 x+12 y)}{x y(18 x+12 y)}=\frac{1}{x} \\
\mu(x)= \pm e^{\int \frac{1}{x}}= \pm x
\end{gathered}
$$

Multiply the DE by x.

$$
\left(27 x^{2} y^{2}+8 x y^{3}\right) d x+\left(18 x^{3} y+12 x^{2} y^{2}\right) d y=0
$$

This DE is exact and can be solved as shown in the above section.

