

Using Polarity Tables Worksheet

When to use it:

- Whenever you are solving an inequality that is not linear this includes when finding domains of even indexed roots
- Finding intervals of increasing and decreasing and concavity

Steps to follow:

Process:	Example:	
What are you trying to solve?	Where is $\frac{2x^3 - 5x^2 - 12x}{x - 6} \ge 0$	
 Make the inequality an equation and solve it and determine where it does not exist If it is a rational expression set the denominator equal to zero as well and use any solutions there in your intervals as well Use those numbers to make intervals (a number line may help) and set up the table fill in the appropriate sign for the intervals and then the full equation. 	$\frac{2x^3 - 5x^2 - 12x}{x - 6} = 0$ Consider $\frac{2x^3 - 5x^2 - 12x}{x - 6}$ The function equals zero when: $2x^3 - 5x^2 - 12x = 0$ $x(2x^2 - 5x - 12) = 0$ $x(2x^2 - 8x + 3x - 12) = 0$ x(x - 4)(2x + 3) = 0 x = 0 or x - 4 = 0 or 2x + 3 = 0 x = 0 or x - 4 = 0 or 2x + 3 = 0 $x = 0 \text{ or } x = 4 \text{ or } x = -\frac{3}{2}$ The function DNE when: x - 6 = 0 x = 6 So use $x = 4$ $x = -\frac{3}{2}$ $x = 0$ and $x = 6$ to create intervals $\frac{1}{-\frac{3}{2}}$ 0 4 6	
• Fill in the intervals (top row) and the factored pieces (first column)	Interval $\left(-\infty, -\frac{3}{2}\right)$ $\left(-\frac{3}{2}, 0\right)$ $(0, 4)$ $(4, 6)$ $(6, \infty)$	
• The last entry in the first column is the original factored statement	Test # -2 -1 1 5 7 x - - + + +	_
 The test number can be any 	(x-4) + +	-
number in the interval	(2x+3) - + + + +	
 Use the test number to determine the signs of the individual entries 	(x-6) +	
• This is done by substituting the x value (test number) in the expression with the test number.	$\frac{x(x-4)(2x+3)}{x-6} + - + - +$	_
For example: use $x = -2$ in $x - 4$ to get $(-2) - 4$ which gives a		

negative result. See highlighted cells Remember you are only concerned with the sign not the actual number outcome. We are testing the interval.	
 Use the resulting row (the last row) to answer your question Be sure to check which type of brackets are appropriate [,], (, or) 	$\frac{2x^2-5x-12}{x-6} \ge 0 \text{ means which } x \text{ values result in a positive output. This happens when} \\ \left(-\infty, -\frac{3}{2}\right] \cup [0, 4] \cup (6, \infty) \\ \text{Note that } x \ne 6 \text{ so it cannot have a square bracket} \end{cases}$

Your instructor may use a similar method that does not use test points. Both methods work.

Used for the Polarity Table

- Solving inequalities that are not linear
- Finding domain when you are required to solve an inequality that is not linear
- Intervals of increasing and decreasing (Calculus)
- Intervals of concavity (Calculus)

Practice:

Pre-Calculus

1. Find the domain of

(a)
$$f(x) = \sqrt{x^2 - x - 6}$$

(b)
$$g(x) = \frac{2x+3}{\sqrt{6x^2-7x-20}}$$

(c)
$$h(x) = \frac{x+3}{\sqrt{4-x^2}}$$

- 2. Solve the following inequalities (a) $x^2 - 11x + 28 < 0$
 - (b) $-2x^3 + 22x^2 56x \le 0$
 - (c) $\frac{2x^2-8}{-4x+5} \ge 0$

Solutions:

- 1. Find the domain of
- (a) Find the domain of $f(x) = \sqrt{x^2 x 6}$

We want $x^2 - x - 6 \ge 0$

Look at $x^2 - x - 6 = 0$ to find intervals.

(x-3)(x+2) = 0 x-3 = 0 or x + 2 = 0x = 3 or x = -2

Use these to make intervals and a table

Interval	(−∞,−2)	(-2,3)	(3,∞)
Test number	-3	0	4
(x - 3)	-	-	+
(x + 2)	-	+	+
(x-3)(x+2)	+	-	+

We want where $x^2 - x - 6 \ge 0$ so where $(x - 3)(x + 2) \ge 0$ (positive). This will happen when $x \in (-\infty, -2] \cup [3, \infty)$.

Notice that the brackets are inclusive brackets because x = -2 or 3 will be included.

Solution: The domain of $f(x) = \sqrt{x^2 - x - 6}$ is $x \in (-\infty, -2] \cup [3, \infty)$.

(b) Find the domain of $g(x) = \frac{2x+3}{\sqrt{6x^2-7x-20}}$.

We want $6x^2 - 7x - 20 > 0$

Notice that it can no longer equal zero because it is a denominator.

Look at
$$6x^2 - 7x - 20 = 0$$

 $6x^2 - 15x + 8x - 20 = 0$
 $3x(2x - 5) + 4(2x - 5) = 0$
 $(2x - 5)(3x + 4) = 0$
 $2x - 5 = 0 \text{ or } 3x + 4 = 0$
 $x = \frac{5}{2}$ or $x = -\frac{4}{3}$

Use these to make intervals and a table

Interval	$\left(-\infty,-\frac{4}{3}\right)$	$\left(-\frac{4}{3},\frac{5}{2}\right)$	$\left(\frac{5}{2},\infty\right)$
Test number	-2	0	3
(2x - 5)	-	+	+
(3x + 4)	-	-	+
(2x-5)(3x+4)	+	-	+

We want where $6x^2 - 7x - 20 > 0$ (positive) so where (2x - 5)(3x + 4) > 0. Solution: The domain of $g(x) = \frac{2x+3}{\sqrt{6x^2 - 7x - 20}}$ is $x \in \left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{5}{2}, \infty\right)$.

(c) Find the domain of $h(x) = \frac{x+3}{\sqrt{4-x^2}}$ We want $4 - x^2 > 0$ (cannot equal zero as it is a denominator) To do this find: $4 - x^2 = 0$ (2 - x)(2 + x) = 0 2 - x = 0 or 2 + x = 02 = x or x = -2

Interval	(−∞,−2)	(-2,2)	(2,∞)
Test number	3	0	3
(2 - x)	+	+	-
(2+x)	-	+	+
(2-x)(2+x))	-	+	-

So the domain for $h(x) = \frac{x+3}{\sqrt{4-x^2}}$ is $x \in (-2, 2)$.

- 2. Solve the following inequalities.
- (a) Solve $x^2 11x + 28 < 0$ $x^2 - 11x + 28 = 0$

(x-4)(x-7) = 0 x-4 = 0 or x-7 = 0x = 4 or x = 7

Interval	(−∞,4)	(4,7)	(7,∞)
Test number	-5	0	8
(x - 4)	-	+	+
(x - 7)	-	-	+
(x-4)(x-7)	+	-	+

0

Solution: $x^2 - 11x + 28 < 0$ is true when $x \in (4, 7)$.

(b) Solve
$$-2x^3 + 22x^2 - 56x \le 0$$

 $-2x^3 + 22x^2 - 56x = 0$
 $-2x(x^2 - 11x + 28) = 0$
 $-2x(x - 4)(x - 7) = 0$
 $-2x = 0 \text{ or } x - 4 = 0 \text{ or } x - 7 = x = 0$
 $x = 0 \text{ or } x = 4 \text{ or } x = 7$

Interval	(−∞, 0)	(0,4)	(4,7)	(7,∞)
Test number	-2	1	5	10
-2x	+	-	-	-
(x - 4)	-	-	+	+
(x - 7)	-	-	-	+
-2x(x-4)(x-7)	+	-	+	-

Solution: $2x^3 + 22x^2 - 56x ≤ 0$ is true when $x \in [0, 4] \cup [7, ∞)$.

(c) Solve
$$\frac{2x^2-8}{-4x+5} \ge 0$$

 $\frac{2x^2-8}{-4x+5} = 0$ when $2x^2 - 8 = 0$
 $2(x^2 - 4) = 0$
 $2(x - 2)(x + 2) = 0$
 $x - 2 = 0$ or $x + 2 = 0$
 $x = 2$ or $x = -2$
 $\frac{2x^2-8}{-4x+5}$ Does not exist when $-4x + 5 = 0$
 $5 = 4x$
 $\frac{5}{4} = x$

Interval	(−∞,−2)	$\left(-2,\frac{5}{4}\right)$	$\left(\frac{5}{4},2\right)$	(2,∞)
Test number	-3	0	$\frac{3}{2}$	3
2	+	+	+	+
<i>x</i> – 2	-	-	-	+
<i>x</i> + 2	-	+	+	+
-4x + 5	+	+	-	-
$\frac{2x^2 - 8}{-4x + 5}$	+	-	+	-
-4x + 5				

Solution: $\frac{2x^2-8}{-4x+5} \ge 0$ is true when $(-\infty, -2] \cup \left(\frac{5}{4}, 2\right]$